Waikanae Estuary
Intertidal Sediment Monitoring 2012/13

Prepared for
Greater Wellington Regional Council
February 2013
Cover Photo: Waikanae Estuary - Dr Barry Robertson measuring sediment plate depths, 14 January 2013.
Waikanae Estuary
Intertidal Sediment Monitoring 2012/13

Prepared for
Greater Wellington Regional Council

By
Leigh Stevens and Barry Robertson
Contents

1. Introduction and Methods .. 1
2. Results, Rating and Management ... 3

List of Figures

Figure 1. Location of fine scale site and buried sediment plates in Waikanae Estuary. 1
Figure 2. Cumulative change in sediment level from 2010-2013. ... 3
Figure 3. Mean sedimentation rate from plate data, Waikanae Estuary (2010-2013). 3
Figure 4. RPD depth (mean and range), Waikanae Estuary (2010-2013). 3

List of Tables

Table 1. Sediment plate data, Waikanae Estuary (2010-2013). ... 4
Table 2. RPD depth, Waikanae Estuary fine scale site (2010-2013). .. 4
1. INTRODUCTION AND METHODS

Soil erosion is a major issue in New Zealand and the resulting suspended sediment impacts are of particular concern in estuaries because they act as a sink for fine sediments or muds. Sediments with a high mud content (i.e. around 30% with a grain size <63μm) are now typical in NZ estuaries that drain developed catchments. In such mud-impacted estuaries, the muds generally occur in the areas that experience low energy tidal currents and waves (i.e. the intertidal margins of the upper reaches of estuaries (e.g. Waikanae Estuary), and in the deeper subtidal areas at the mouth of estuaries (e.g. Hutt Estuary)). In estuaries where there are no large intertidal flats, the presence of mud along the narrow channel banks in the lower estuary can also be elevated.

Sedimentation rates have been measured annually in Waikanae Estuary since 2010 in conjunction with fine scale and macroalgal monitoring (Robertson and Stevens 2010, 2011, 2012, Stevens and Robertson 2010, 2011, 2012, 2013). The current report summarises the intertidal sedimentation rate monitoring results for Waikanae Estuary, one of the key estuaries in the Greater Wellington Regional Council (GWRC) coastal monitoring programme. The report presents the results from sampling on 14 January 2013, and uses condition ratings developed for Wellington’s estuaries to rate the condition of the estuary, and recommend monitoring and management actions.

Detailed descriptions of sampling sites and methods are provided in Robertson and Stevens (2010), and are briefly summarised below.

Sedimentation Rate
To measure the sedimentation rate from now and into the future, a set of 4 concrete plates were buried in the estuary in 2010. Each plate, marked by wooden pegs and GPS referenced, was located and the depth of sediment over the plate measured by pushing a probe into the sediment until it hit the plate. A number of measurements on each plate were averaged to account for irregular sediment surfaces.

Redox Potential Discontinuity (RPD) depth
To assess sediment oxygenation, the depth to the RPD was measured at 10 plots at the fine scale site by digging down from the surface with a hand trowel until the RPD transition was located.

Figure 1. Location of fine scale site and buried sediment plates in Waikanae Estuary.
1. Introduction and Methods (Continued)

WELLINGTON ESTUARIES: CONDITION RATINGS

A series of interim fine scale estuary “condition ratings” (presented below) have been proposed for Waikanae Estuary (based on the ratings developed for New Zealand estuaries - e.g. Robertson & Stevens 2006, 2007, 2008, 2009). The ratings are based on a review of estuary monitoring data, guideline criteria, and expert opinion. They are designed to be used in combination with each other, and with other fine and broad scale indicators (usually involving expert input) when evaluating overall estuary condition and deciding on appropriate management. The condition ratings include an “early warning trigger” to highlight rapid or unexpected change, and each rating has a recommended monitoring and management response. In most cases initial management is to further assess an issue and consider what response actions may be appropriate (e.g. develop an Evaluation and Response Plan - ERP).

Sedimentation Rate

Elevated sedimentation rates are likely to lead to major and detrimental ecological changes within estuary areas that could be very difficult to reverse, and indicate where changes in land use management may be needed.

<table>
<thead>
<tr>
<th>RATING</th>
<th>DEFINITION</th>
<th>RECOMMENDED RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>0-1mm/yr (typical pre-European rate)</td>
<td>Monitor at 5 year intervals after baseline established</td>
</tr>
<tr>
<td>Low</td>
<td>1-2mm/yr</td>
<td>Monitor at 5 year intervals after baseline established</td>
</tr>
<tr>
<td>Moderate</td>
<td>2-5mm/yr</td>
<td>Monitor at 5 year intervals after baseline established</td>
</tr>
<tr>
<td>High</td>
<td>5-10mm/yr</td>
<td>Monitor yearly. Initiate ERP</td>
</tr>
<tr>
<td>Very High</td>
<td>>10mm/yr</td>
<td>Monitor yearly. Manage source</td>
</tr>
<tr>
<td>Early Warning Trigger</td>
<td>Rate increasing</td>
<td>Initiate Evaluation and Response Plan</td>
</tr>
</tbody>
</table>

Redox Potential Discontinuity

The RPD is the grey layer between the oxygenated yellow-brown sediments near the surface and the deeper anoxic black sediments. It is an effective ecological barrier for most but not all sediment-dwelling species. A rising RPD will force most macrofauna towards the sediment surface to where oxygen is available. The depth of the RPD layer is a critical estuary condition indicator in that it provides a measure of whether nutrient enrichment in the estuary exceeds levels causing nuisance anoxic conditions in the surface sediments. The majority of the other indicators (e.g. macroalgal blooms, soft muds, sediment organic carbon, TP, and TN) are less critical, in that they can be elevated, but not necessarily causing sediment anoxia and adverse impacts on aquatic life. Knowing if the surface sediments are moving towards anoxia (i.e. RPD close to the surface) is important for two main reasons:

1. As the RPD layer gets close to the surface, a “tipping point” is reached where the pool of sediment nutrients (which can be large), suddenly becomes available to fuel algal blooms and to worsen sediment conditions.
2. Anoxic sediments contain toxic sulphides and very little aquatic life.

The tendency for sediments to become anoxic is much greater if the sediments are muddy. In sandy porous sediments, the RPD layer is usually relatively deep (>3cm) and is maintained primarily by current or wave action that pumps oxygenated water into the sediments. In finer silt/clay sediments, physical diffusion limits oxygen penetration to <1cm (Jørgensen and Revsbech 1985) unless bioturbation by infauna oxygenates the sediments.

<table>
<thead>
<tr>
<th>RPD CONDITION RATING</th>
<th>DEFINITION</th>
<th>RECOMMENDED RESPONSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Good</td>
<td>>10cm depth below surface</td>
<td>Monitor at 5 year intervals after baseline established</td>
</tr>
<tr>
<td>Good</td>
<td>3-10cm depth below sediment surface</td>
<td>Monitor at 5 year intervals after baseline established</td>
</tr>
<tr>
<td>Fair</td>
<td>1-3cm depth below sediment surface</td>
<td>Monitor at 5 year intervals. Initiate ERP</td>
</tr>
<tr>
<td>Poor</td>
<td><1cm depth below sediment surface</td>
<td>Monitor at 2 year intervals. Initiate ERP</td>
</tr>
<tr>
<td>Early Warning Trigger</td>
<td>>1.3 x Mean of highest baseline year</td>
<td>Initiate Evaluation and Response Plan</td>
</tr>
</tbody>
</table>
2. RESULTS, RATING AND MANAGEMENT

The two indicators used to assess sediment in Waikanae Estuary in 2013 were the rate of sedimentation, and RPD depth.

Rate of Sedimentation

The depths to four plates buried in Waikanae Estuary (see Robertson and Stevens 2010, 2011) were re-measured in January 2013 as part of annual long term sedimentation rate monitoring in the estuary (Figures 2 and 3, Table 1).

As in 2011 and 2012, fine soft muds were evident along the edge of the Waikanae river channel and across the tidal flats adjacent to the fine scale site. In 2013, the site was covered by 30-50cm of water at the time of sampling due to raised river levels following rainfall, combined with a build up of sand at the estuary mouth on Waikanae beach temporarily constraining draining of the estuary.

Since 2010 there has been a total increase in sediment depth of +87mm, at a mean overall rate of +28.9mm/yr. Annual sedimentation rates range from +16.5 to +45mm/yr. These sedimentation rates fall in the “very high” category and indicate that the intertidal flats in the mid-upper Waikanae Estuary are rapidly infilling. Figure 3 shows the greatest deposition over the individual buried plates was near the channel edge (Plate 1), reflecting fine muds depositing from the Waikanae River.

Redox Potential Discontinuity (RPD)

The depth to the RPD boundary is a critical estuary condition indicator in that it provides a direct measure of sediment oxygenation. This commonly shows whether nutrient enrichment in the estuary exceeds levels causing nuisance anoxic conditions in the surface sediments, and also reflects the capacity of tidal flows to maintain and replenish sediment oxygen levels.

In well flushed sandy intertidal sediments, tidal flows typically oxygenate the top 10cm of sediment. However, when fine muds fill the interstitial pore spaces, less re-oxygenation occurs and the RPD moves closer to the surface.

In response to the presence of fine muds and, to a lesser extent, nutrient enrichment, the RPD depth has decreased at the Waikanae sites from 2010 to 2013 (Figure 4, Table 2). In 2013 it was shallow (1-2cm), indicating poorly oxygenated sediments, particularly in the muddier areas along the channel edge. The RPD value falls within the “fair-poor” condition rating.
Table 1. Sediment plate data, Waikanae Estuary (2010-2013).

<table>
<thead>
<tr>
<th>SITE</th>
<th>Mean Sediment Depth (mm)</th>
<th>Change (mm)</th>
<th>Site Mean (mm/yr) 2010-2013 Overall Rate (mm/yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plate 1</td>
<td>180 238 276 296</td>
<td>58 38 20</td>
<td>+45.0 +25.3 +16.5 +28.9</td>
</tr>
<tr>
<td>Plate 2</td>
<td>213 261 295</td>
<td>48 34 10</td>
<td></td>
</tr>
<tr>
<td>Plate 3</td>
<td>231 270 295</td>
<td>39 25 15</td>
<td></td>
</tr>
<tr>
<td>Plate 4</td>
<td>235 270 274</td>
<td>35 4 21</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. RPD depth, Waikanae Estuary fine scale site (2010-2013).

<table>
<thead>
<tr>
<th>Waikanae A</th>
<th>Mean RPD (cm) n=10</th>
<th>Condition Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>3.0 (range 2-3.5)</td>
<td>GOOD</td>
</tr>
<tr>
<td>2011</td>
<td>5.1 (range 3-10)</td>
<td>GOOD</td>
</tr>
<tr>
<td>2012</td>
<td>1.1 (range 1-2)</td>
<td>FAIR</td>
</tr>
<tr>
<td>2013</td>
<td>1.1 (range 1-2)</td>
<td>FAIR</td>
</tr>
</tbody>
</table>

Conclusions

The very high rate of sedimentation, “fair RPD” rating, and continued presence of muddy sediments, signify rapid infilling and consequent degradation of this important part of Waikanae Estuary.

Recommended Monitoring

It is recommended that the sedimentation rate continue to be measured annually at the same time the estuary is being quickly assessed for macroalgal growths or the presence of nuisance conditions. The next monitoring in Waikanae River Estuary is therefore due in January/February 2014.

Recommended Management

The sedimentation rate results reinforce the need for the identification and management of fine sediment sources entering the estuary.

Acknowledgements

This survey and report was completed with the support of Greater Wellington Regional Council. The feedback of Megan Oliver is much appreciated.

References