

TE AWARUA-O-PORIRUA WHAITUA COMMITTEE

ROUNDING OUT THE OBJECTIVES – MEMO FOR THE COMMITTEE WORKSHOP 21 JUNE 2018

Aim

This memo summarises work by the Project Team to identify any recommendations for changes to the Committee's draft freshwater and harbour objectives. As part of this work, the Project Team looked at the following:

- 1. Contradictions between the draft objectives, and/or the scenarios to achieve these objectives, between water management units (WMUs) where one WMU flows into another, which are:
 - upstream and downstream between the freshwater WMUs, and
 - between the freshwater WMUs and the harbour WMUs receiving environments.
- 2. Checking the draft objectives within freshwater WMU groups to characterise similarities and differences, and where differences existed, checking the reasons for these are recorded, and
- 3. Identifying any risks to the draft objectives being met from uncertainties in modelling and data.

The analysis was carried out for the water quality attributes only (i.e. *E. coli*, nitrate toxicity, ammonia toxicity, zinc and copper). We did not attempt to analyse the ecological attributes (i.e. periphyton, MCI, native fish) as these outcomes are dependent on multiple factors (e.g. water quality, flow and habitat conditions) and are consequently too complex for this method of checking for anomalies.

Things to note:

When we use the term 'the degree of effort', we are meaning the minimum effort required to achieve the draft objective according to the modelling results. Where 'WS+' has been used in the tables below, this indicates that even the Water Sensitive scenario does not achieve the chosen objective and so any mitigation options need to do more, or other things over and above, what was modelled in order to achieve the objective.

Key to levels of effort

- BAU Business as usual scenario
- Imp Improved scenario 'moderate'
- WS Water Sensitive scenario 'high degree of effort'
- WS+- Beyond the Water Sensitive scenario 'high degree of effort'

Findings

1. Checking for contradictions between WMUs

(a) Upstream /downstream alignment

For this analysis we looked at the objectives for each attribute within a WMU and compared them to downstream WMUs **(Table 1)**

- Generally the objectives are set higher in the rural WMUs (e.g. Rangituhi) than in the urban WMUs
- We do not see any upstream objectives that would put downstream objectives at risk and therefore do not recommend any changes

Looking at the (minimum) degree of effort required to achieve the objective and comparing that degree of effort upstream/downstream (Table 2)

- Upper Kenepuru WMU requires a higher degree of effort for nitrate toxicity and copper than downstream in the Kenepuru WMU, however, this is likely due to this being a rural area that will see significant land use change (Transmission Gully)
- The Stebbings WMU requires a higher degree of effort for the zinc and copper than the Porirua WMU that it flows into. However, because Stebbings is a growth area it is recognised that it is more effective to put in water sensitive mitigations when development occurs rather than relying on retrofitting urban land uses after development
- Again, we do not see any risks to the objectives and do not recommend any changes

(b) Freshwater / harbour alignment

For this analysis we have just looked at the metal contaminants (zinc and copper) and compared the degree of effort for metals into each arm of the harbour **(Table 3)**.

- The Onepoto Fringe and Pauatahanui Fringe Stream WMUs stand out as requiring a large effort compared with other established urban areas
- In the urban WMUs more effort is required for those discharging to the Pauatahanui arm than the Onepoto arm.

2. Characterising similarities and differences within WMU Groups (Table 4)

- The predominantly urban WMUs (e.g. Porirua and Kenepuru) see a high degree of effort for *E.coli* and moderate effort for other contaminants
- The predominantly rural WMUs (e.g. Kakaho and Pauatahanui) see a high degree of effort for *E.coli*
- Taupo Stream WMU has a high degree of effort across all contaminants, which is consistent with the values the Committee has indicated they have for this WMU and that

this WMU is at risk of a decrease in water quality under urban development (as is anticipated for this area)

• In the Belmont WMU the draft objective for dissolved zinc can be attained by BAU, however, an Improved level of effort could shift the objective to a B band

Belmont Stream													
Attribute	Current state	BAU	Imp	WS									
Zinc	С	C↑	В	Α									

Recommendation

The Committee considers changing the draft objective for dissolved zinc in the Belmont WMU from C to B.

3. Risks to objectives from modelling or data quirks

- Most WMUs will require water sensitive or water sensitive + efforts to achieve the *E.coli* and ammonia objectives. However:
 - The modelling maybe overestimating *E.coli* in the upper rural WMUs and therefore the amount of effort required to achieve the objective may not be so high.

Recommendation

The Committee retains their draft objectives for *E.coli* but note that the effort required to achieve the objective in the rural WMUs may not be so high.

• The modelling may be overestimating ammonia in the rural WMUs and therefore the degree of effort required to achieve the objective may not be so high.

Recommendation

The Committee retains their draft objectives for ammonia but note that the effort required to achieve the objective in the rural WMUs may not be so high.

- Generally, in *urban* WMUs an improved level of effort is required to achieve the zinc and copper objectives. However:
 - The model may be overestimating the current state for zinc and copper in the Onepoto Fringe WMU

Recommendation

The Committee retains the draft objectives for dissolved zinc and copper in the Onepoto Fringe but note the effort required to achieve the objective may not be so high.

Key Messages

- Generally, in *rural* WMUs, where future development has been identified, water sensitive efforts will be required to achieve the zinc and copper objectives.
- Where Greenfield development is proposed, a water sensitive, or water sensitive + effort is required.
- There are a couple of exceptions to the above generalisations and they are where the Committee has indicated a high degree of value for a particular WMU and therefore, the objectives and consequently the degree of effort required to reach the objective is higher than other similar WMUs.
- While this analysis has not looked at sediment (and the objectives set at the last meeting for sediment and mud in the harbour), it is a useful reminder that to achieve the soft mud objectives, a high level of effort (water sensitive+) is likely to be required in rural areas.

Where to next?

We will need to undertake a similar analysis when we have the coastal and harbour modelling results as this information will enable us to calculate the loads of contaminants from each WMU. We may find in particular WMUs, a high degree of effort is required to achieve an objective, but that WMU may only be contributing a small portion of the total load for that contaminant. Therefore, is the degree of effort justified?

Table 1: Upstream/downstream freshwater WMU comparison: draft objectives

Porir	ua Cat	chme	nt																							
	Upp	er Kene	puru																							
E.Coli	Nitrate	Ammonia	Zinc	Copper																						
С	Α	Α	Α	Α																						
		\mathbf{V}																								
Kenepuru Stream			Belmont Stream					Steb	bings St	ream			Takapu Stream					Rangituhi Stream								
E.Coli	Nitrate	Ammonia	Zinc	Copper	E.Coli	Nitrate	Ammonia	Zinc	Copper		E.Coli	Nitrate	Ammonia	Zinc	Copper		E.Coli	Nitrate	Ammonia	Zinc	Copper	E.Coli	Nitrate	Ammonia	Zinc	Copper
С	В	С	В	С	С	В	С	С	С		С	В	В	Α	Α		С	В	В	С	Α	Α	Α	Α	Α	Α
										💙 🥐 Porirua				-												
											E.Coli	Nitrate	Ammonia	Zinc	Copper	-										
											С	В	С	С	С]										
Pauat	tahanı	ui Cato	hmen	nt	Duck	Creek	Catch	nment	:																	
	Judg	eford St	ream			Uppe	er Duck	Creek	-																	
E.Coli	Nitrate	Ammonia	Zinc	Copper	E.Coli	Nitrate	Ammonia	Zinc	Copper																	
С	Α	Α	Α	Α	В	Α	Α	Α	Α																	
					_																					
	Pa	uatahar	nui			Lowe	er Duck	Creek	-																	
E.Coli	Nitrate	Ammonia	Zinc	Copper	E.Coli	Nitrate	Ammonia	Zinc	Copper																	
С	Α	Α	Α	Α	С	Α	Α	Α	Α																	

Indicates WMU flows to another WMU

ENPL-6-2679

Table 2: Upstream/downstream freshwater WMU comparison: Level of effort

Porir	ua Catc	hment																									
		Upper	Kenepuru																								
E Coli	Nitrate	Ammonia Toxicity	Dissolved zinc	Dissolved Copper																							
WS+	WS+	Imp	WS	WS+																							
		V																									
		Kenepuru Stream Belmont Stream					1		Ste	bbings St	ream	1			Та	kapu Stre	am			Rangituhi Stream							
E.Coli	Nitrate	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate	Ammonia	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate	Ammonia Toxicity	Dissolved zinc	Dissolved Copper	E.Coli	Nitrate	Ammonia Toxicity	Dissolved zinc	Dissolved
WS+	BAU	Imp	Imp	Imp		WS+	BAU	BAU	BAU	Imp		WS	BAU	BAU	WS+	WS+		WS+	BAU	BAU	Imp	BAU	Imp	BAU	BAU	BAU	BAU
																	1										
																						-					
											~		à	Porirua	<u>.</u>		-		-								
											~		Nitrate	Ammonia	Dissolved	Dissolved	-	-									
	_											E.Coli	toxicity	Toxicity	zinc	Copper											
												WS+	BAU	WS	Imp	Imp											
Pauat	ahanui	Catchr	nent			Duck Cree	ek Catchme	nt																			
		Judgef	ord Stream	·			1	Upper Duck Cre	ek																		
E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper																	
WS+	Imp	WS	BAU	Imp		WS+	Imp	Imp	WS+	WS+																	
		•						V																			
		Pauatah	anui Stream	•		Lower Duck Creek																					
E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper																	
WS	Imp	Imp	Imp	WS		WS+	BAU	WS+	WS	WS+																	

Table 3: Level of effort comparison to the harbour

Onepoto	Arm				
	Zinc	Copper		Zinc	Copper
Intertidal	A (BAU)	A (BAU)	Intertidal	A/B (Imp)	A (Imp)
Subtidal	C个 (WS+)	B个 (WS)	Subtidal	B个 (WS)	A (Imp)
WMU			WMU		
Wh	nitireia		Upper D	uck Creek	
Disso lved zinc	Dissolved Copper		Dissolved zinc	Dissolved Copper	
Imp	WS+		WS+	WS+	
Hukori	to Stroom		Lower D	uck Crook	
	Dissolved Copper		Lower D	Dissolved	
Dissolved zinc			Dissolved zinc	Copper	
VV5	VV3+		VVS	VV5+	
Mahina	wa Stream		Pauataha	nui Stream	1
Dissolved zinc	Dissolved Copper		Dissolved zinc	Dissolved	
Imp	WS+		Imp	WS	
Rangitu	uhi Stream		Judgefo	rd Stream	
Disso lved zinc	Dissolved Copper		Dissolved zinc	Dissolved Copper	
BAU	BAU		BAU	Imp	
Stebbi	ngs Stream		Ration	n Creek	
Dissolved zinc	Dissolved Copper		Dissolved zinc	Dissolved Copper	
WS+	WS+		WS+	WS+	
					-
Takap	u Stream		Horikiri and	Dissolved	
Dissolved zinc	Dissolved Copper		Dissolved zinc	Copper	-
Imp	BAU		WS+	WS+	ļ
Pr	orirua		Kakabo	Stream	1
Dissolved zinc	Dissolved Copper		Dissolved zinc	Dissolved	
Imn	Imn		Imn	Copper	
	iiiip		inip	iiip	
Upper	Kenepuru		auatahanui	fringe stream	1
Disso lved zinc	Dissolved Copper		Dissolved zinc	Dissolved Copper	
WS	WS+		WS	WS+	
Kenepu	uru Stream				
Dissolved zinc	Dissolved Copper				
Imp	Imp				
Onepo	oto Fringe				
Dissolved zinc	Dissolved Copper				
WS+	WS+				

Table 4: Level of effort comparison within WMU groups

		Pukerua					Paua	tahanui Si	tream				Be	Imont Stre				
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		
WS+	Imp	Imp	BAU	WS+		WS	Imp	Imp	Imp	WS		WS+	BAU	BAU	BAU	Imp		
	Hong	oeka to Pu	ukerua				R	ation Cree	ek			Stebbings Stream						
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		
WS+	Imp	Imp	BAU	WS+		Imp+	WS	WS+	WS+	WS+		WS	BAU	BAU	WS+	WS+		
	•	Whitireia	1	•														
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper			Low	er Duck C	reek				Hu	karito Stre	am			
WS+	WS+	BAU	Imp	WS+		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		
						WS+	BAU	WS+	WS	WS+		WS+	BAU	WS+	WS	WS+		
	Ta	aupo Strea	am		Ī		Pauatah	anui fringe	streams				Ma	hinawa Str	eam			
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		
WS+	WS+	WS+	WS	WS+		Imp	Imp	WS	WS	WS+		WS+	BAU	BAU	Imp	WS+		
	-	-	-										-	-	, P			
													Or	nepoto Frir	nge			
	Horikir	i and Mot	ukaraka				Rar	ngituhi Str	eam	1		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved	Dissolved		
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved		E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved		Imp	BAU	WS	WS+	WS+		
WS	Imp	Imp	WS+	WS+		Imp	BAU	BAU	BAU	BAU								
														Titahi				
	Ka	akaho Stre	am				Та	kapu Stre	am		1	E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved	Dissolved		
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved		E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved		Imp	Imp	WS	WS	Imp		
\A/C+	\\/C		Imp	Imp		\M/C+	DALL		Imp			p	p			p		
VV3+	003	VV3	iiiip	mp		VV3+	BAU	BAU	iiiip	BAU								
	lud	geford Str	'e am				lin	ner Kener			1		Ker	anuru Str	aam			
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		
WS+	Imp	WS	BAU	Imp		WS+	WS+	Imp	WS	WS+		WS+	BAU	Imp	Imp	Imp		
												-						
	Upp	per Duck C	reek	<u> </u>														
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved	Dissolved Copper								Porirua						
WS+	Imp	Imp	WS+	WS+								E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		
												WS+	BAU	WS	Imp	Imp		

ENPL-6-2679