Rounding out of objectives

Aim

- To look at the draft objectives in a number of different ways to:
 - Identify any inconsistencies/contradictions
 - Identify any risks to the objectives being met from uncertainties in the modelling
- Note: not all attributes were part of this analysis

Upstream/downstream comparison by objective (Table 1)

Porir	ua Cat	chmer	nt												
	Upp	er Kenej	puru												
E.Coli	Nitrate	Ammonia	Zinc	Copper											
С	Α	Α	Α	Α											
		•													
	Kene	epuru Sti	ream			Belr	nont Str	eam	-			Steb	bings St	ream	
E.Coli	Nitrate	Ammonia	Zinc	Copper	E.Coli	Nitrate	Ammonia	Zinc	Copper		E.Coli	Nitrate	Ammonia	Zinc	Coppe
С	В	С	В	С	С	В	С	С	С		С	В	В	Α	Α
										\rightarrow	Porirua				
										\rightarrow	E.Coli	Nitrate	Ammonia	Zinc	Coppe
											С	В	С	С	С

Upstream/downstream comparison by level of effort (Table 2)

Poriru	ua Catc	hment													
		Upper Ke	enepuru												+
E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper											
WS+	WS+	Imp	WS	WS+											
		•													Γ
	I	Kenepuru	Stream				Belmon	t Stream				Ste	bbings St	ream	
E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper	E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper		E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Di: Co
WS+	BAU	Imp	Imp	Imp	WS+	BAU	BAU	BAU	Imp		WS	BAU	BAU	WS+	
										\rightarrow			Porirua	1	
											E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Di Co
											WS+	BAU	WS	Imp	

Level of effort comparison to the Harbour (Table 3)

Pauata	hanui Ar	m						
Zinc	Copper							
A/B	Α							
(Imp)	(Imp)	Intertidal						
B个	Α							
(WS)	(Imp)	Subtidal						
WMU								
Upper D	uck Creek		Judgefo	ord Stream	Horikiri an	d Motukaraka	Kakaho	Stream
Dissolved zinc	Dissolved Copper		Dissolved zinc	Dissolved Copper	Dissolved zinc	Dissolved Copper	Dissolved zinc	Dissolved Copper
WS+	WS+		BAU	Imp	WS+	WS+	Imp	Imp
Pauataha	inui Stream		Ratio	n Creek				
Dissolved	Dissolved		Dissolved	Dissolved				
zinc	Copper			Copper				
Imp	WS		WS+	WS+				
Lower D	uck Creek		auatahanu	fringe stream				_
Dissolved zinc	Dissolved Copper		Dissolved zinc	Dissolved Copper				

Level of effort comparison to the Harbour (Table 3)

Onepo	to Arm						
Zinc	Copper						
Α	Α						
(BAU)	(BAU)	Intertidal					
<u>(5,10)</u> C↑	B↑	intertidui		_			
		Subtidal					
(WS+)	(WS)	Subtidal					
WMU							
Rangitu	hi Stream		Upper	Kenepuru			
Dissolved	Dissolved		Dissolved	Dissolved			
zinc	Copper		zinc	Copper			
BAU	BAU		WS	WS+			
Wh	itireia		Takap	u Stream			
Dissolved	Dissolved		Dissolved	Dissolved			
zinc	Copper WS+		zinc	Copper BAU			
Imp	VV5+		Imp	BAU			
Stebbin	gs Stream		Belmo	nt Stream			
Dissolved	Dissolved		Dissolved	Dissolved	1		
^{zinc} WS+	Copper WS+		^{zinc} BAU	Copper			
VV5+	VVS+		BAU	Imp	J		
Hukarit	o Stream		Mahina	wa Stream			
Dissolved	Dissolved		Dissolved	Dissolved			
zinc	Copper		zinc	Copper			
WS	WS+		Imp	WS+			
Kanana			De			0	to Frings
Dissolved	ru Stream		PC Dissolved	Dissolved		Dissolved	to Fringe Dissolved
zinc	Copper		zinc	Copper		zinc	Copper
Imp	Imp		Imp	Imp		WS+	WS+

Level of effort comparison within WMU groups(Table 4)

Rural

Horikiri and Motukaraka											
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper							
WS	Imp	Imp	WS+	WS+							
Kakaho Stream											
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper							
WS+	WS	WS	Imp	Imp							
Judgeford Stream											
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper							
WS+	Imp	WS	BAU	Imp							
	Upp	oer Duck C	reek								
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper							
WS+	Imp	Imp	WS+	WS+							
	Paua	tahanui Si	tream								
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper							
WS	Imp	Imp	Imp	WS							
	R	ation Cree	ek								
E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper							
Imp+	WS	WS+	WS+	WS+							

Urban

Hukarito Stream												
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved								
		Toxicity	zinc	Copper								
WS+	BAU	WS+	WS	WS+								
Mahinawa Stream												
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved								
2.00%	Turrate to slory	Toxicity	zinc	Copper								
WS+	BAU	BAU	Imp	WS+								
Onepoto Fringe												
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved								
E.C011	Nillale loxicity	Toxicity	zinc	Copper								
Imp	BAU	WS	WS+	WS+								
		Titahi										
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved								
2.001	Nitrate toxicity	Toxicity	zinc	Copper								
Imp	Imp	WS	WS	Imp								
	Ker	nepuru Str	eam									
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved								
E.C011	Nillale loxicity	Toxicity	zinc	Copper								
WS+	BAU	Imp	Imp	Imp								
	Porirua											
E.Coli	Nitrate to xicity	Ammonia	Dissolved	Dissolved								
	india to solutiv	Toxicity	zinc	Copper								
WS+	BAU	WS	Imp	Imp								

Belmont Stream Zinc objective

	Belmont Stream							
Attribute	E.Coli	Nitrate to xicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper			
Current State	Е	В	С	С	С			
Draft Objective	C	В	C	С	С			
Scenario	WS+	BAU	BAU	BAU	Imp			
		Stebbings Stream						
Attribute	E.Coli	Nitrate toxicity	Ammonia Toxicity	Dissolved zinc	Dissolved Copper			
Current State	E	С	В	А	А			
Draft Objective	С	В	В	Α	Α			
Scenario	WS	BAU	BAU	WS+	WS+			

	Belmont Stream										
Attribute	Current state	BAU	Imp	WS							
Zinc	С	C↑	В	Α							

Recommendation

Consider changing the zinc objective from C to B

Modelling and data quirks

- *E.Coli* overestimation in the upper parts of rural WMUs
- Ammonia overestimation in rural WMUs
- Zinc and copper overestimation in Onepoto fringe

Recommendation

Retain draft objectives but note the effort required to achieve the objective might not be so high

Conclusions

- The draft objectives are looking good
- Further reviews of the objectives will need to be undertaken as we get more information e.g. economics, harbour modelling, contaminant loads
- Some key themes can be drawn out which will help with the development of the policy packages
 - Greenfield development areas are likely to require water sensitive efforts
 - In existing urban areas stormwater efforts generally require an improve effort and a water sensitive+ effort for wastewater
 - In rural WMUs a high level of effort is required to achieve the harbour objectives for sedimentation rate and % area with soft mud

