Report of Te Awarua-o-Porirua Whaitua Committee Workshop

19 April 2018, Plimmerton Boating Club, Plimmerton 5.00pm – 9.00pm Workshop (Closed to the public)

Summary

This report summarises notes from a workshop of the Te Awarua-o-Porirua Whaitua Committee held on 19 April 2018 at the Plimmerton Boating Club.

Contents

These notes contain the following:

Overview

Workshop Notes

- Part 1 Introduction
- Part 2 Development of Freshwater Objectives
- Part 3 Engagement Activities

Overview

Workshop Te Awarua-o-Porirua Whaitua Committee:

attendees

Present: Diane Strugnell, Larissa Toelupe, David Lee (arrived 6pm), Barbara Donaldson, John Gibbs Sharli-Jo Solomon (arrived 5.45pm), Warrick Lyon, John McKoy, Stu Farrant (Chair)

Apologies: Dale Williams, Richard Cook, Hikitia Ropata, Jennie Smeaton

Greater Wellington Project Team: Alastair Smaill (Project Manager), Suze Keith, Brent King, Jon Gabites, Sheryl Miller, Hayley Vujcich, Paula Hammond, Mike Grace, Keith Calder (PCC), Kara Dentice (WWL), Kate Pascall (WCC)

Independent Facilitator: Kristy McGregor

Guests:

- Stuart Easton, Jacobs
- Penny Fairbrother, Greater Wellington Regional Council
- Tim Sharp, Mitchell Daysh

Notes prepared by Suze Keith.

Workshop purpose	The purposes of this workshop were: Development of Freshwater Objectives				
	1. Develop freshwater objectives for <i>E. coli</i> and the four toxicity attributes (ammonia, nitrate, dissolved copper and dissolved zinc) for each water management unit (WMU) in the Whaitua.				
	Community engagement				
	 To update the group on previous engagement activities undertaken and any future dates scheduled. To establish that the Committee is comfortable with the outline of the presentation that Stu has developed for the meeting with Councillors from Porirua City Council on 26th April. 				
	Purpose 1 was mostly achieved. Purpose 2 was completed. Purpose 3 was partially achieved.				
Agenda	The agenda is detailed in the table below.				

TIME	ТАЅК	PURPOSE	WHO
Introduction			
5.00pm	Karakia		Jennie/Larissa
	Welcome	Establish	Stu
	 Apologies & 	purpose of	
	Introductions	meeting	
	Chair's Direction		
	Purpose of meeting &		
	agenda outline		
	Housekeeping		Kristy
Development of Freshwater Objectives			
5.10pm	Role of Tonight's Workshop	Clarify what	Kristy
	Focus of this workshop	we are	
		doing	
		tonight, and	
		where this	
		fits in the	
		process	
5.15pm	Introduction to setting	Orientation	Al
	freshwater objectives	to	
	Refresher of previous	freshwater	
	discussions	objectives &	
		process for	

	Complete activity sheets Reporting & Group	Achieve	Kristy
	 Group Activity: Developing Objectives for <i>E. coli</i> Break into three allocated groups Use WMUs allocated to each group 	Work in small groups to set <i>E. coli</i> objectives	Group Facilitators
5.50pm	Introduction to Group Activity: Developing Objectives for <i>E. coli</i> Walk through group activity instructions	Introduce group activity	Kristy
5.40pm	Questions Process for setting a freshwater objective for <i>E.</i> <i>coli</i> Lead through process of objective setting using modelling data & drawing on own experience and knowledge	Work through the process of objective setting as a group	AI
5.25pm	 chunks Presentation: Scenario Modelling Data for <i>E. coli</i> Results of modelling undertaken - high region-wide overview; main drivers of change; patterns of note How this modelling can be used to form an objective 	Inform Committee of high level overview of <i>E. coli</i> data	Brent & Stuart Easton
	 What is an objective? Key principles for setting objectives Process for setting objectives - Role of WMUs; refresh on NOF bands, meaning of toxicity (chronic and toxic) How modelling can help inform an objective Why the objective setting has been split into two separate 	setting objectives	

	 Reporting back from each group Discussion on each objective 	on objectives discussed in smaller groups	
	Confirmation of objectives		
7.00pm	Dinner		
7.30pm	 Presentation: Scenario Modelling Data for Toxicity for Ecosystem Health Why Ammonia, Nitrate, Dissolved zinc, Dissolved Copper are grouped together 	Inform Committee of high level overview of toxicity data	Brent & Stuart Easton
	 Results of modelling undertaken - high region-wide overview; main drivers of change; patterns of note 		
	 How this modelling can be used to form an objective 		
7.45.000	Questions	Listing during	Kainta a
7.45pm	Introduction to Group Activity: Developing Objectives for Toxicity for Ecosystem Health Walk through group activity instructions	Introduce group activity	Kristy
	 Group Activity: Developing Objectives for Toxicity for Ecosystem Health Break into three allocated groups Use WMUs allocated to each group Complete activity sheets 	Work in small groups to set toxicity objectives	Group Facilitator
8.25pm	Reporting & Group	Achieve	Kristy
	 Discussion Reporting back from each group Discussion on each objective Confirmation of objectives 	consensus on objectives discussed in smaller groups	
Engagement A		1	
8.45pm	Update on Previous Engagement Activities	Inform Committee	Suze & Stu

8/50000	 What activities have been held since the last meeting? Upcoming Committee attendance at Council engagements: Tomorrow – Go Deep Developers Group at PCC – Diane, John and John Next Thursday, April 26 – PCC Councillor's Workshop – John G, Stu, David, Diane, Sharli Jo May 10 – WCC Councillor's Workshop – Stu, John M, Sharli Jo, Diane Outline of proposed presentation to Porirua City Council Councillors on 26th April 	of progress of engagement activities	Stu 9 Suza
8:50pm	Other Business Field trip prior to 10 th May (when finalising freshwater objectives).		Stu & Suze
8.55pm	Thank yous Karakia		Stu Jennie/Larissa

Committee The Committee made decisions on the objectives for freshwater quality for *E*. Decisions coli, ammonia toxicity, nitrate toxicity, dissolved zinc toxicity and dissolved copper toxicity the 23 water management units in the whaitua.

Workshop The following actions were agreed to:

Actions

- - 1. Suze to follow up with some possible dates for the field trip, inviting all Committee members and Project Team members who wish to attend, by 27th April.

Workshop Notes

Part 1 – Introductions

Stu welcomed everyone to the meeting.

Introduction of new Facilitator

Stu introduced Kristy McGregor as the new facilitator for the TAoPW. Kristy noted she is very excited to be working with the committee on grass roots community participation in decision making around resource management. She has a background in community engagement and development. She is particularly interested in policy development is currently writing her Masters thesis on community involvement and representation in decision making in policy development. She lives on a dairy and beef farm at Manakau.

Part 2 – Development of Freshwater Objectives

Role of the workshop in setting freshwater objectives

Kristy explained the role of the workshop in developing freshwater objectives. There are two meetings set aside to develop freshwater objectives: 19th April and 10th May. Kristy referred the Committee to the Objectives Summary Table, which sets out all of the Freshwater Objectives the Committee will need to set. She outlined that these are only first cut decisions and that further opportunities will be given to refine them. She outlined that the focus of the workshop was on setting objectives for human health for recreation (*E. coli*) and for the four water quality toxicity attributes for ecosystem health. She outlined the flow of the evening's workshop.

Introduction to setting freshwater objectives

Al Smaill provided a refresher on freshwater objectives. He talked through the attributes the Committee would be setting objectives for this evening, noting *E. coli* relates to human health is a compulsory attribute under the National Policy Statement for Freshwater Management (NPS-FM). The toxicity attributes relate to the health of the ecosystem. Nitrate and ammonia toxicity are compulsory in the NPS. For example, ammonia in water kills the bugs. Acute toxicity means risk to bugs quickly; chronic toxicity is a slow risk to bugs. Zinc and copper, while not compulsory in the NPS-FM, are common urban contaminants so very important for the TAoPW. There is no standard or regulation for zinc and copper, as these are currently being developed, so Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC 2000 Guidelines¹) have been used as a starting point, and built into a framework that is consistent with the NPSFM.

Al outlined that the next meeting would look at ecological attributes, from the smallest freshwater species to the largest: periphyton, Macroinvertebrate Community Index (MCI), and fish. Al noted there is also an opportunity to consider objectives around habitat.

¹ The aim of the ANZECC 2000 Guidelines is to provide authoritative guidance on fresh and marine water quality management issues in both New Zealand and Australia. Basic sediment quality information is also included.

http://www.mfe.govt.nz/fresh-water/technical-guidance-and-guidelines/anzecc-2000-guidelines

Al spoke to the role of an objective in referring to the state of the water we want. We have current state information. The task for the Committee in this workshop is how much do we want to improve the state of the waterway? He outlined the NPS-FM requirements, which specify that attributes in bands D and E must at least become a C. For other bands, C and up, the Committee have a choice about whether they want to maintain or improve, and by how much. Al outlined the meaning of the bands for *E. coli* in terms of risk of people engaging in contact recreation (swimming) and getting sick.

Al explained that this process of objective setting is a quick, initial cut, and we will need to rationalise as we go. He explained that factors including upstream and downstream, and the intersection of freshwater objectives with coastal objectives, may influence the shape of the final freshwater objectives.

Questions raised by the Committee:

Timeframes	 What timeframe is being placed on achieving these objectives? Al explained that when an objective is set, guidance will be provided as to how fast that change is required.
What the	 How the bands relate to numbers?
bands represent	 Al explained that a number will be used at the end of the process, but for the purposes of initial objective setting and general communications, a band will currently be used.
Economics	 We don't yet have information on economics? How much it will cost and over what time? Al explained that while we might need more information to make the decision, for now the task is to provide a first cut, including a range of objectives if need be, with reasoning behind it.

Presentation: Scenario Modelling Data for E.coli

Prior to the workshop, a <u>summary of the scenario modelling data</u> was circulated to Committee members.

Brent King presented on the scenario modelling undertaken and how it can be used. The purpose of modelling is to extend beyond areas that are monitored using known patterns and how contaminants are generated and transported. Brent notes that scenarios show interventions in the form of mitigation devices and land use change, to help get a sense of levels of effort relative to water quality improvements.

Brent noted that the current state of *E. coli* across the WMU's is largely in the E band. He noted that there are four metrics within the National Objectives Framework (NOF) that make up the overall grade. There are a few sites where we are pretty close to tipping into the next band and only need a little extra effort to get over the line.

Questions raised by the Committee:

- Robustness•How does modelling calibrate with reality given the lack of monitoring
sites? How do we know that the model is well calibrated?Modelling•Brent noted that there are four sites used for calibration.
 - Brent noted that there are four sites used for calibration, covering three rivers, including two rural and one urban (with two sites on the urban river). Most examples are showing good correlation. Hundreds of records, 5-10 years of data with twelve monthly samples.
 - What is meant by effort?
 - Al noted that modelling tells, for a given amount of effort, what shift will occur. It is not exact and some decisions will need to be revised when more information comes to hand.
 - Brent noted that effort is a reference to differing management practices on the land which are parts of the scenarios. In a rural context, for example, effort includes levels of riparian planting and stock exclusion. In an urban setting, effort includes types of roofing materials, water sensitive design.
 - Feedback was provided that the presentation of results was really helpful.

Summary of rural results

Rural with extensive grazing and low flows, such as the small eastern streams, for example Upper Duck and Takapu, are unlikely to get to a C band. Most other rural streams will get there with the types of changes modelled in the improved summary. Some mitigations have been modelled but can't model all potential mitigations in the scenario model.

Using a water sensitive (WS)scenario (which includes water sensitive design practices in the urban environment and higher implementation of mitigation practices in the rural area too) a couple of WMUs got closer to the B band. Retirement is the biggest driver of change in the modelled scenarios. For example, for the Horokiri Stream, D band is based on 40% of the catchment in rural grazing. A C band can be reached with 20% in rural grazing; and a B band reached with 12% of the catchment in rural grazing. Similar results are seen in the Pauatahanui Stream catchment, with a reduction from 55% to 20%.

Questions raised by the Committee:

Setting Objectives for WMUs below Band C	 If we can't get beyond a C band in the scenario modelling, do we actually need to set an objective? What about the ones that will struggle to change? Al advised that we have to set objectives for all WMUs. Objectives can't be set below a C. Options that exist to the Committee are in time flexibility. What assumptions have been made in the scenario modelling regarding the extent of certain activities to make changes? Is there
Assumptions in Scenario Modelling	 scope for pulling some levers harder on the tools used to mitigate effects? Brent notes that where total stock exclusion was applied in the model this saw reductions in <i>E. coli</i> of 45% from treated areas. Where the retirement of grazing land was conducted, this saw reductions of 99%. There is scope to pull different levers harder and to use mitigations not modelled.

How do you explain a significant jump between bands for the different scenarios modelled? • Brent explained there were dramatic change between scenarios. Al notes that it sometimes depended on where the stream was sitting in the band to start with. Stu noted the scale of the subcatchment was also important. If steep land is retired, it may jump more dramatically. What is the impact on the results of not differentiating between Sources of human and animal sources of E. coli? How do we know what the E.coli source of E. coli is, and therefore what mitigation is needed? • Al noted that for some WMUs we need to have a closer look at the sources of *E. coli*. This will be an implementation step. The success or otherwise of all of the objective decisions rely on good implementation.

Summary of urban results

Unlike the rural area, there are big changes but these are not reflected in changes in bands – they stay in the same band. Arrows do however represent a shift within bands. For example, in the water sensitive scenario, there is a 70-85% reduction in concentrations. Model assumptions are that the biggest changes are in the repairing of cross connections and leakages plus wastewater overflows.

Questions raised by the Committee:

Assumptions for greenfields sites	 For greenfield sites, what assumptions are made in terms of quality of building areas, and does it factor in increases in overflow downstream because of the wastewater network? Brent outlined that new areas adopt the base <i>E.coli</i> as per now, under Business as usual (BAU). Additional load and its effects on overflows is not captured under BAU. What about Aotea block, which uses newer housing with better
	design?
	 Brent described how Aotea will fit with greenfield development modelling, in which it models the treatment of runoff in infill and brownfill areas, and is highly effective in removing 90% of the <i>E.coli</i>.
Improvements	 With improvements, how long will that stay in the same band before you see it move to another band? Brent noted that the model is based on full implementation of the changes all at once.

Process for setting a freshwater objective for E. coli

Al talked the Committee through the process of setting an objective for *E. coli*, using the Horokiri Stream as an example.

- Current state: B and D bands (the D could be an E, as shown from monitoring)
- Minimum shift: C band
- Where might you like to go? Must protect for human health for swimming and secondary contact a range of community expectations probably A-C

- Mana whenua expectation is A
- Scenario modelling results:
 - BAU = D/E
 - \circ Improved = C/D
 - WS = C/B
- Useful to have an idea of expectations, and an idea of what is possible in practice. How does it relate to our expectations?
- For the improved, D is one where ¾ of the metrices re better than D and the 4th is dragging down the results. Therefore for improved the last D is almost a C band and for WS the C is on the cusp of turning into a B band
- Probably could get to B with a lot of effort, with expectation from the community and a mana whenua of A band.
- In behind each band is a lot of different scores each is made up of four different scores. Lowest one sets the overall score and gives you an idea of where you want to channel your effort.

The session was whiteboarded and workings are attached at Appendix A.

Questions raised by Committee members:

Difference in effort between bands	 How different are the bands to each other? How easy is it to jump from one to another?
Setting an objective we can't deliver on	 If you can't set an objective below C but you can set expectation above C, are we confusing ourselves if we set an objective we can't deliver? Al explained that whatever the objective, we have to be confident that we will get there. Must be realistic and practical. Before it becomes policy, we must be able to do cost benefit analysis.
	• If a lot of effort for C, then perhaps that's our initial objective and over time spread the cost to increase to another band?
Values	 Perhaps there are some places where it is important to achieve an A and others where a C is fine – depending on where people choose to swim. Al explained that it is really important to record an expectation, but we still have to set an objective at a place which is achievable.
	 You might ask the question - how much do people really want to swim or take mahinga kai? If in reality people don't intend in that stream to swim or take mahinga kai then we could adjust our expectations. Al noted this was a really good suggestion, to think about the values for a particular stream.
Connection between freshwater and coastal water	 How much can we assume how much contaminant ends up in the harbour where people do swim? Al noted that we do know it ends up in the harbour, but for now the focus is on the freshwater objectives, and we will come to the coastal objectives in the future.
	• The standards for the harbour are very different.

Group Activity: Developing Objectives for E. coli

Kristy introduced the group activity. She explained the purpose of the group as being to set objectives for *E. coli* for each of the WMUs, and noted that each group had been allocated 7-8 WMUs to work through, grouped according to the WMU groups. If different opinions in the group existed, both or a range of band options could be recorded. Kristy reminded the group this was a first cut and would be revisited with future information. She noted the importance of coming back together as a group to seek a consensus and provide time to debate any concerns that may be had by choices made by other groups.

Committee members then broke into groups where they worked through the activity sheets. The results of the activity are attached in Appendix B.

Reporting & Group Discussion

The group then moved back together, and the objectives decided by each group were put up on the Objective Summary Table. As a group, each of the selected objectives were worked through and reasoning of the groups shared. There was a general contentment with the objectives set by Committee members.

Presentation: Scenario Modelling Data for Toxicity for Ecosystem Health

Prior to the workshop, a summary of <u>the scenario modelling data for toxicity</u> was circulated to Committee members.

Brent outlined the four toxicity attributes, chosen for management of effects on fish, insects and plants.

Ammonia Toxicity

For ammonia, the overall grade is based on the worst performing of the metrics. The objective is to maintain or improve the current state. Urban streams were good/fair. Rural streams were very good or good. We haven't modelled pH which strongly effects ammonia toxicity, although with an adjustment based on a nominal pH from monitoring data, many rural streams would likely be in or close to an A band.

Summary of rural results

For rural streams, a little extra effort is all that is required in a lot of places. Only a handful of WMUs that wouldn't meet the minimum requirement and a few that would need a water sensitive effort. Belmont is unlikely to get there, due to wastewater overflows.

Summary of urban results

While there are differences between measured and modelled data, modelled results in urban areas are generally believable because of the wastewater overflows. Those in C band require significant improvement of wastewater overflows to move into a higher band.

Questions raised by the Committee:

Source of	٠	The ma	ain source of urea?
urea		0	Brent responded that the main source is nitrogen through
			wastewater overflows.

Nitrate Toxicity

In rural areas, maintain or improve the current or C band or better if not already there. Main source of nitrate in rural is run-off from grazing pasture. In urban areas the main source is run-off from urban parks, such as golf courses, gardens and lawns.

Al referred the Committee to the nitrate sheet. Nitrate is toxic to aquatic life and the reason it was included in the NOF is that there are places where it is very high. It is usually associated with high intensive agriculture and is a major contributor to algal growth. Levels here will potentially cause problems for algae growth, both for freshwater and the harbour. Al notes that in terms of nuisance, anything below an A is becoming a problem for algal growth. Committee can recommend levels like this. Al recommended thinking about nitrate from the perspective of doing what you can. This can be then taken to the periphyton objectives, asking, is there a problem for algae growth?

Questions raised by the Committee:

Levels of nitrate	 What level of nitrate is allowed for in an A band? Brent explained for a WMU to be an A band, it is still exhibiting a high level of nitrate.
Relationship	
between	 If nitrates are a by-product of ammonia – wouldn't ammonia and
nitrate and	nitrate mirror each other?
ammonia	 Brent noted that there are a couple of different forms of nitrogen and the nitrate form is less associated with wastewater. Ammonia is quite toxic to aquatic life so the thresholds are relatively lower and give a different pattern of grading compared to nitrate. Al noted that ammonia does oxidise to nitrogen so over the flow of the stream, and with sewage inputs at bottom of streams, the ammonia and nitrate load make up the total nitrogen load which drives algal growth in the harbour.

Dissolved Zinc

The results are based on the ANZECC Guidance as the interpretation framework because there is currently no NOF regulation for zinc. Currently drawing on best available knowledge, while the framework is still in development. There remains lots of unknowns, so for now this is the starting point.

Rural areas have maintained an A band most of the time. Results for BAU around Taupō Stream are due to the traffic load, and the treatment of industrial areas. For urban, the results are overly

optimistic re roof painting and replacement. Roof painting and replacement are an effective treatment method, though they are more likely to bring the urban results closer to a B band than an A band in the water sensitive scenario.

Questions raised by the Committee:

Dissolved metals	 Why are we only looking at dissolved metals? Brent noted that totals (dissolved plus solids) will be looked at in regard to the harbour for the coastal objectives. Are the dissolved ones biologically active? Bioaccumulation in freshwater shellfish? Brent noted that it gives an idea of the response of the streams and risk to ecosystem.
Sources of dissolved metals	 What are the main sources of dissolved zinc? Brent noted roofs, roads, tyres.
Improved & water sensitive models	 What would change under improved and water sensitive? What is meant by treatment of high traffic roads? Brent noted swales, bioretention, wetland treatments as all being fairly effective for zinc. And roof painting or replacement had a significant effect too. People are replacing their roofs over time with products that use less zinc, so that will improve.

Dissolved Copper

Also no NOF guidance for copper. Rural areas are generally very good. Urban is poor or fair. Extensive sources such as roads and residential paved surfaces won't see a lot of change. The biggest impact treatment high traffic roads and commercial/industrial paved areas have limited extent so the scope for improvement is not as great.

Questions raised by the Committee:

Anomalies •	Is there an anomaly that all urban sites either don't change or get worse?
Causes of copper toxicity •	

Part 3 – Community Engagement

Al spoke to his meeting with Porirua City Council (PCC) officers, including the District Plan and Consenting Team, on April 13. They talked about alignment needs and especially the consenting process, and doing a similar session with Wellington City Council (WCC) staff.

Other business

Suze raised the idea of doing a field trip between now and 10th May to ground truth the streams. This could either be for the purposes of the Committee better understanding the streams, noting the correct common and traditional naming of the steams or for community engagement, if the trip was opened to a wider group.

There was some discussion on the merits of a trip and there were a number of committee members who felt that it would be really useful to walk the streams and understand the local context, the smells, the geography, how people interact with them. This would be open to all Committee members for those who wish to attend able to come along.

It was suggested a representative stream be used, with Ration Creek, and the streams behind Takapuwahia and Taupō Stream each identified as possible spots to visit. The monitoring points, along with the upper points and where the streams reach the coast were identified as being useful places to stop.

Action: Suze to follow up with some possible dates for the field trip, inviting all Committee members and Project Team members who wish to attend, by 27th April.

Stu commended the Committee on the great effort and exercise.

Warrick noted his apologies for the next meeting on 10th May.

Mike Grace and Sharli Jo completed the karakia.

The meeting closed at 9.05pm.

APPENDIX A

- Must Human Mana BAM Impried A R B ICIC OKR D E D? IE

APPENDIX B

Part Part Part Part Part Part Part Part	Drains to	WMU group	WMU name	Attributes	Current State	Objective 19.4.18	Under what scenario	Reasons
								Urban contamination issue, small catchment with little dilution. Don't know a lot about this catchment
Part is a set is a se			Pukerua	Ammonia Toxicity	В	Α		doable, low effort to achieve
								Between objective and aspiration. Cld be D current state? Inlcudes the marae, high m.w. values
	Open coast	Coastal catchments	Hongoeka to Pukerua	Ammonia Toxicity	в	A*		Special place, other similar catchments eg. Whitirela gone for an A – similar effort required
								Rural so think model is overestimating current state
				E.Coli	E	В		
Normal Normal Normal Normal Normal Normal Particle Normal Normal Normal Normal Normal Normal Normal Normal			Whitireia					Special place, other similar catchments have set an A
Part Part Part Part Part Part Part Part				Dissolved zinc				Easy effort
Partner Partner Partner Partner Partner Partner Partner Partner No Partner Partner Partner Partner Partner No Partner Partner Partner Partner Partner No Partner Partner Partner Partner Partner Partner								
Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note Note		Town Observe and Commu	Tours Observe					
<tt></tt>	raupo	raupo stream and swamp	raupo stream					
Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter Parter								
				Nitrate toxicity				
			Horikiri and Motukaraka					Already almost there
						A*		
								all private land so accesibility restricted, discharges near recreation sites, lots of effort to get to D
			Kakaho Stream	Ammonia Toxicity	В	Α		amount of effort to get to high conservation is betw. Improved + w.s. Satisfies all the values
Parabolise Parabol								At risk of decreasing under BAU (potential increased urban development). Need to do better than BAU
Participants Image: Participants Image: Participants Image: Participants Image: Participants Participants Participants Participants Participants Participants <td></td> <td>Pauatahanui steep rural streams</td> <td></td> <td>E.Coli</td> <td>E</td> <td>С</td> <td></td> <td></td>		Pauatahanui steep rural streams		E.Coli	E	С		
Packannel Image: Packannel Image: Packannel Image: Packannel Image: Packannel Packannel Image: Packannel Image: Packannel Image: Packannel Image: Packannel Packannel Image: Packannel Image: Packannel Image: Packannel Image: Packannel Image: Packannel Packannel Image: Packannel			Judgeford Stream				1	Close to current state least effort
Parabilities Parabilities<				Dissolved zinc	А	A*	1	
Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner Partner							-	
Pauches Pauches <t< td=""><td></td><td></td><td></td><td>Nitrate toxicity</td><td>В</td><td>Α</td><td>1</td><td></td></t<>				Nitrate toxicity	В	Α	1	
Processes Partial second part of the part of t			Upper Duck Creek				-	amount of effort to get to high conservation is betw. Improved + w.s. Satisfies all the values
Parthabail ordinates Parthabai	Pauatahanui Inle†			Dissolved Copper	Α	A*		
Partalemini priori Partale							-	wildlife reserve, mahinga lai and weaving materials, largest stream, LU changes can improve W.Q.
Paukaning apper particular second s			Pauatahanui Stream	Ammonia Toxicity	В	Α		
Paintain data with 199000 Paint 1 Paint 2 Paint								
Number of the state of the st		Pauatahanui rural streams		E.Coli		В		high access, recn, ecological values, potential for A, but impact of doing so outweighs the gains
Image: second			Ration Creek					
Image: Part is a problem is a prob								
Parahani uban ten here Image frame and set of sector								
Partabana market Partabana market<								
Paulalani ukan tonin wind wind wind wind wind wind wind w		Pauatahanui urban streams	Lower Duck Creek					
One-point set in the								
Output Display C A Company Company Non-point Res Res Company Res Res Res Non-point Res Res Res Res Res Res Res Non-point Res Res <t< td=""><td></td><td rowspan="2">Pauatahanui fringe streams</td><td></td><td></td><td></td><td></td><td>amenicy, horizontaci receation values, clinicer improved, dimitery to provide for intervalues</td></t<>			Pauatahanui fringe streams					amenicy, horizontaci receation values, clinicer improved, dimitery to provide for intervalues
 Nonepoint in the second second				-	-			
Nepto tare pure large pure lar						В		High m.w., recreation, ecological values
Processor Processor <t< td=""><td></td><td rowspan="2"></td><td rowspan="2">Rangituhi Stream</td><td></td><td></td><td></td><td></td><td>achievable under BAU; low hanging fruit!</td></t<>			Rangituhi Stream					achievable under BAU; low hanging fruit!
Opepolo step nul stem Image of the step of the ste				Ammonia Toxicity	В	А		
 								
Onepoint steep run lites may an lites of the steep of the st		Onepoto steep rural streams		E.Coli		С		
Oregots into its stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Oregots interf Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial stream Industrial			Takapu Stream					
Onepoin run3 streams Col Col Col Servenity spontorial Onepoin run3 streams Lipper Kenepuru Namata Taxiriy 8 A A A A A A A A A A A A Bigitity anomalou due to deraces flow fon retrements to me images less dilution Bisched dig E C Description flow fon retrements to me images less dilution Bisched dig E C Description flow fon retrements to me images less dilution Bisched dig E C Description flow flow flow flow flow flow flow flow								
Onepote small lubins stream Operation luping l								
Onepote null strain Databased and cogene A A Highly somaios due to decessing frees from retiments, the new impacts – issal illuito, Disolectore operation Onepote null strain Coli Col Col Coli			Upper Kenepuru					
Onepoto rural streams Economic Streams Onepoto rural streams Belmont Streams Economic Streams						Α		Slightly anomalous due to decreasing flows from retirement. No new impacts – less dilution
Onepote rural streams Belinent Stream Belinent Stream Belinent Stream Belinent Stream Belinent Stream Compote rural streams Compote rural streams Edition Stream Compote rural streams Compote rural streams Edition Stream Compote rural streams Compote rural streams Compote rural streams Compote rural streams Compote rural streams Edition Stream Compote rural streams								
Onepoto rural streams Dissolute Gogen C C Oreprise Hillings streams Stebbings Stream Fibrate tacking C Mer values change Mer values change Depoto rural streams Stebbings Stream Fibrate tacking C B Mer values change Stebbings Stream Fibrate tacking C B Change in land secural to urban Described 2inc B Change in land secural to urban Change in land secural to urban Dissolved 2inc B Change in land secural to urban Change in land secural to urban Dissolved 2inc A A A A Dissolved 2inc B Securatio not theiring improvements but could be a good set soft site with thigh mu walues Stable 2inc B A Teaching not theiring improvements but could be a good set soft site with figh mu walues Stable 2inc B A Teaching not theiring improvements but could be a good set soft site with figh mu walues Stable 2inc Call E Call Resplay the soft site site soft site site site site site site site sit			Belmont Stream				1	
Onepoto rural streams Dissolute Gogen C C Oreprise Hillings streams Stebbings Stream Fibrate tacking C Mer values change Mer values change Depoto rural streams Stebbings Stream Fibrate tacking C B Mer values change Stebbings Stream Fibrate tacking C B Change in land secural to urban Described 2inc B Change in land secural to urban Change in land secural to urban Dissolved 2inc B Change in land secural to urban Change in land secural to urban Dissolved 2inc A A A A Dissolved 2inc B Securatio not theiring improvements but could be a good set soft site with thigh mu walues Stable 2inc B A Teaching not theiring improvements but could be a good set soft site with figh mu walues Stable 2inc B A Teaching not theiring improvements but could be a good set soft site with figh mu walues Stable 2inc Call E Call Resplay the soft site site soft site site site site site site site sit				Ammonia Toxicity Dissolved zinc	C C	C C	-	Change in landuse from rural to urban Area facing intensification
Onepoto inlet Edition		Onepoto rural streams		Dissolved Copper	С	С		Developed hillside suburb where development likely to contribute to copper
Stebbings Stream Amount Society B Change in land scular up to upan Onepoto inlet Amount Society A A A Onepoto inlet Edition Coling E Coling Coling Endition Second Society Binophysic Edition Edition Edition Edition Second Society Edition <								
Onepoto inlet Dissolute scoper A A A Onepoto inlet EG/II E C-04 E C-04 Encode in the interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge interver. Wile ange of mainings hal visues and waht lapu. Appears hard to charge intervere happears hard to char				Ammonia Toxicity	В	В		
Onepoto inlet Eul Eul Eul Ceul Eul Ceul ents to the mare. Wider ange of making ka vidues and walk input Appears hold to dange. Nonepoto inlet Hukarlo Stream B B Second control to the mare. Wider ange of making ka vidues and walk input Appears hold to dange. Amonia Toxicity C A Second control to the mare. Wider ange of making ka vidues and walk input Appears hold mean improve is easy. Social difficitie B A Test to the mare. Wider ange of making ka vidues and walk input Appears hold mean improve is easy. Mainia to Kida difficitie B A Test to the mare. Similar to Hukarto but bigger dilution so higher potential for change. Mainia to Kida difficitie B B Security control to to to the accost case study ster with high n.v. values. Amonia Toxicity B B Beaufil bush, high eoi, Values, Takapowshia, Why 8 - oss connections? Case study projec? Disolved control B A A Case								Indinian is acinevable
Onepoto inlet Hukarlo Stream Amonia Toxicity C A Issicial to Real Toxicity C A Solicity di loc B A Textment ford un off Textment ford un off Dissolie di loc B A Textment ford un off Textment ford un off Mainava Steam Edi E C-B Beguing considerable effort just to maintain Mainava Steam Edi E C-B Beguing considerable effort just to maintain Mainava Steam Edi E C-B Beguing considerable effort just to maintain Mainava Steam Edi E C-B Beguing considerable effort just to maintain Mainava Steam Edi E C-B Beguing considerable effort just to maintain Mainava Steam Edi E C-B Beguing considerable effort just to maintain Mainava Steam Edi C B A Considerable effort just maintain Hukarito but bigger di luttoin so higher mu values Maintai Stream Edi C C B A Consecon cintraccitage do no intraccicina do data to calibra		Onepoto small urban streams	Hukarito Stream	E.Coli				
Displayed price B A Treatment of road non off Displayed price C B Requires considerable effort just to maintain Event C B Requires considerable effort just to maintain Maintavas Stream E C B Requires considerable effort just to maintain Maintavas Stream E C B Secretario considerable effort just to maintain Maintavas Stream E C B Secretario constrabuling importantial for change Maintavas Stream E C B A C Maintavas Stream E C B C C Maintavas Stream E C B C C Maintavas Stream E C B C C B Maintavas Stream E C B A C C Maintavas Stream E C B A C C B C C C C C C C	Onepoto inlet			Ammonia Toxicity	С	А		special to Ngati Toa. Small numbers of overflows should mean improve is easy
Early Mathinawa Stream Early Mathinawa Stream Early Mathinawa Stream Cord Minare toxicity Amenia Toxicity B B Description (Cord) Description (Cord) <thdescription (cord)<="" th=""> <thdescription (cord)<="" th=""></thdescription></thdescription>	-p					Α		Treatment of road run off
Mathinawa Stream Amenian Touciny B B Beaudiful bash, high eol. Values Taspawahia. Why 5 - oss connections? Case study project? Onepoto small urban streams Dissolved zinc B A Connections? Case study project? Onepoto small urban streams Eol B C B Derest in model because of a lack of data to allivate, puts flow is low if time step lends to uncertal to the arbour. Will need massive investments? Onepoto fringe Eol C B Alliras with e-coil effort. Also thinking about the coast Onepoto Fringe Eol C B Alliras with e-coil effort. Also thinking about the coast Eol C B Alliras with e-coil effort. Also thinking about the coast Dissolved coper D AB Challering problem -will take a long time to memoly What is possible? Dissolved coper D C Maxt get to C, but it is an existing urban location so very hard to achive Dissolved coper C C Alliras with e-coil effort. Also thinking about the coast Eoli Col C Culted with e-coil effort. Also thinking about the coast Dissolved coper Col Col Col C					E	С-В*		next to the marae. Similar to Hukarito but bigger dilution so higher potential for change
Despeta since Be A Concepto small whan streams Onepoto small whan streams Dissive discourt C B Over sci in model because of a lack of data to calibrate, plus flow (is low / time stag leads to uncerta streams) Onepoto small whan streams E.Gii E C B Over sci in model because of a lack of data to calibrate, plus flow / is low / time stag leads to uncerta streams) Minate toxicity A <td></td> <td rowspan="2">Mahinawa Stream</td> <td></td> <td></td> <td>В</td> <td></td> <td>Scenarios not showing improvement but could be a good case study site with high m.w values</td>			Mahinawa Stream			В		Scenarios not showing improvement but could be a good case study site with high m.w values
Composed shaul insults of each of the stream share of the strea				Dissolved zinc	В	Α	1	
Nitrate solicity N A A Nitrate solicity C B Aligors with ecoli effort. Also binking about the coast. Dissolved sine: D A-B Collinging prolinger with take a long time to remody. What is possible? Dissolved sine: D C B Collinging proliner with take a long time to remody. What is possible? Dissolved sine: D C Nutrate toxicity C B Eddin E C* C Curder improved. Modelling shows change can occur, recreational space which meets the coast. Nitrate toxicity A A C Curder improved. Modelling shows change can occur, recreational space which meets the coast. Nitrate toxicity A A C C D Dissolved since C B Unled with ecoli and coastal outcomes Dissolved since C B Unled with ecoli and coastal outcomes Nitrate toxicity B C Must get to C, but it is an existing urban location so very hand to achieve Dissolved since C C C Must get to C, but it is an existing urban locatino so very hand t							-	
Dissolute direc D A-B Onalinging problem - will take a long time to remody. What is possible? Dissolute docym D C Muts get to C, but it is an existing unban location so why had to achieve Titahi E.G C C Curled improved. Modelling shows change can occur, recessional space which meets the coast. Titahi E.G C C Curled improved. Modelling shows change can occur, recessional space which meets the coast. Titahi Dissoluted direc C B Curled improved. Modelling shows change can occur, recessional space which meets the coast. Titahi Dissoluted direc C B Curled improved. Modelling shows change can occur, recessional space which meets the coast. Titahi Totast bit(1) C B Curled improved. Modelling shows change can occur, recessional space which meets the coast. Totast bit(1) C B Curled improve in urban shows that to achieve Dissolved concer D C Must get to C, but it is an existing urban location so way hand to achieve Notate bit(2) E C Will get bit(1) Must get to C, but it is an existing urban location so way hand to achieve Dissolved concer			Onepoto Fringe	Nitrate toxicity	Α	А	1	
Dissolved Gogoer D C Must get to C but if is an existing urban location so wery hand to achieve Example Example C Example Current improved. Modelling mound shared can occur, recreational space which meets the colus of the columner improved. Modelling mound shared can occur, recreational space which meets the colus of the columner improved. Modelling mound shared can occur, recreational space which meets the colus of the columner improved. Modelling mound shared can occur, recreational space which meets the colus of the columner improved. Modelling mound shared can occur, recreational space which meets the columner infrastructure of the columner infrastructure of the columner infrastructure of the columner infrastructure to ach objective. Kenepure Stream Kenepure Stream Example C A Monola Toxicity C C Mast get to C, but it is an existing urban location so very hard to achieve Kenepure Stream Kenepure Stream Example C C Mast get to C, but it is an existing urban location so very hard to achieve Dissolved concer C C B Hard to improve in urban wers Mast get to C, but it is an existing urban location so very hard to achieve Dissolved concer C B B Hard to improve in urban wers Mast get to C, but it is an existing urban urban wers Dissolved concer							1	
Nitrate coldry A A Nitrate coldry C B Under with coldrad costal outcomes Dissolved cinc C A Must get to C, but it is an existing utan location so very hard to achieve Dissolved cinc C A Must get to C, but it is an existing utan location so very hard to achieve Kenepuru Stream ECol ECol will get benefit from Upper Kenepuru, need to hommer infrastructure to ach objective Minate couldry B B Hard to improve in urban area Amonia Toxicity C C Must get couldry as water weare network improves. Dissolved cinc C B B Hard to improve in urban area Biostived Cooper D C Must get couldry as water weare network improves. Dissolved cinc C B Somwater network improves. Dissolved cinc C Minite social Cooper D Dissolved cinc C B Informum standend, good assiration, somewhat achievable Minite social Cooper D C Minite social Coot of improvement significant. Likely: Dissolved cinc Disolo				Dissolved Copper	D	с		Must get to C; but it is an existing urban location so very hard to achieve
Titahi Ammonia Toucitry C B Unked with accil and coastal outcomes Solshed zinc, C A E E E E E Solshed zinc, E E E Will get benefit from Upper Kenepuru, med to hammer infrastructure to ach objective Kenepuru Stream Kenepuru Stream E C Will get benefit from Upper Kenepuru, med to hammer infrastructure to ach objective Kenepuru Stream Kenepuru Stream E C Will get benefit from Upper Kenepuru, med to hammer infrastructure to ach objective Kenepuru Stream Kenepuru Stream E C Will get benefit from Upper Kenepuru, med to hammer infrastructure to ach objective Kenepuru Stream Kenepuru Stream E C Will get benefit from Upper Kenepuru, med to hammer infrastructure to ach objective Busolved zinc, C C B B Minorize as variative water network improves Dissolved zinc, C B B Minorize as variative highway Minorize as variative, solid variative meaning and good solid variation, somewhat achievable Nitrate toucity B B Minoprice major improvement will be from upper greema			Titahi					under improved. Modelling shows change can occur, recreational space which meets the coast
Pointrue Description C Must get to: (but it is an existing urban location sover) hard to achieve Ecol E C will get to: (but it is an existing urban location sover) hard to achieve Kenepure Stream For it is an existing urban location sover) hard to achieve B B Hard to improve in urban reads water herein in the structure to ach objective Missist existing C C May improve as vaster water network improves Josolved zinc C B B Hard to improve in urban reads water network improves Josolved zinc C B B Hard to improve as vaster water network improves Josolved zinc C B Somwersher merainity B Josolved zinc C B Somwersher merainity B Josolved zinc C B Texavyehicle and state highway Josolved zinc E C minion machinet, good spinistion, somewhat schlerabile Nitrate toxicity B B major improvement will be from upper spresm Ammenia Toxicity A/C A/C Gereads Alon Hoid laterenain as A. Iolantia as C. Cost of improvements ignificant. Likely				Ammonia Toxicity	с	В		Linked with ecoli and coastal outcomes
Ecol E C will get benefit from Upper Kenepuru, need to hammer infrastructure to ach objective Kenepuru Stream Nitrate toxicity B B Hard to Improve in urban area Amonia Toxicity C C May improve any active any active free variation Amonia Toxicity Dissolved oper D C B Starmwater neutrality Dissolved oper D C Heavywhile and state highway Poritrua Stream Ecol Ecol minimum standard, good aspiration, somewhat achievable Nitrate toxicity B B major improvement will be from upper stream Poritrua Anticity A/C A/C Grenda North Industrial strain sot. Cost of improvement significant, Likely Dissolved oper D C Cold with will lead to ammonia toxicity improvements								Must get to C; but it is an existing urban location so very hard to achieve
Kenepuru Stream Ammonia Toxicity C C May Improve as waste water network improves Dissoved oper D C B Softmwater neurality Dissoved oper D C Heavy vehicle and state highway Porirua Stream EGN E C Porirua Stream Porirua Kinest existing B Porirua Stream Porirua Kinest existing B Porirua Stream Porirua Amonia Toxicity A/C		Kenepuru Stream	Kenepuru Stream		E			wil get benefit from Upper Kenepuru, need to hammer infrastructure to ach objective
Dissolved sinc C B Stormwater neutrality Dissolved Sopper D CC Heavy vehicle and state highway E.Gor E CC miniumus standard, good aspiration, somewhat achievable Porirua E.Gor E CC minium standard, good aspiration, somewhat achievable Nitrate toxicity B B major improvement will be from upper stream Porirua Minist Toxicity A/C A/C Grenads Noth Industrisi Should remain an A. Ibinitain as C. Cost of improvement significant. Likely: Dissolved zinc D C Doolei Dissolved zinc								
E Coll E C minimum standard, good aspiration, somewhat achievable Porirua Nitrate texicity B B major improvement will be from upper stream Porirua Ammonia Toxicity A/C A/C C Grenda North Industrial straid terminian A. Iblinitain as C. Cost of improvement significant, Likely: Dissolved zinc D C Doct Units of the Cost of control straid straid toxicity improvements				Dissolved zinc				Stormwater neutrality
Porirua Stream Porirua		Porirua Stream						
Portrua Stream Portrua Ammonia Staticity VC V			Porirua			В		major improvement will be from upper stream
							-	be prioritised for E.Coli which will lead to ammonia toxicity improvements
Utstorved copper U C snows potential				Dissolved zinc Dissolved Copper	D	c		Shows potential