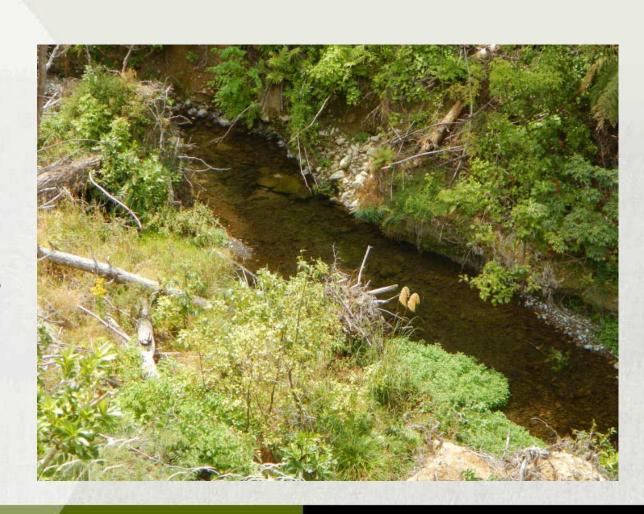
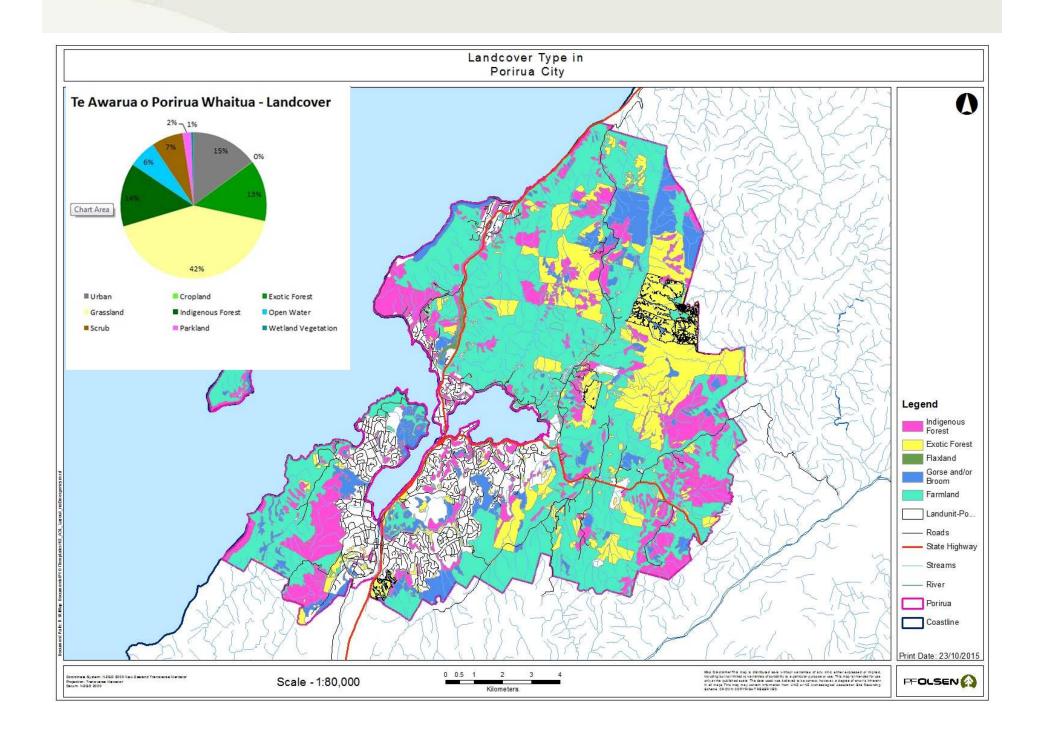


The role of commercial plantation forestry in the status of our water quality

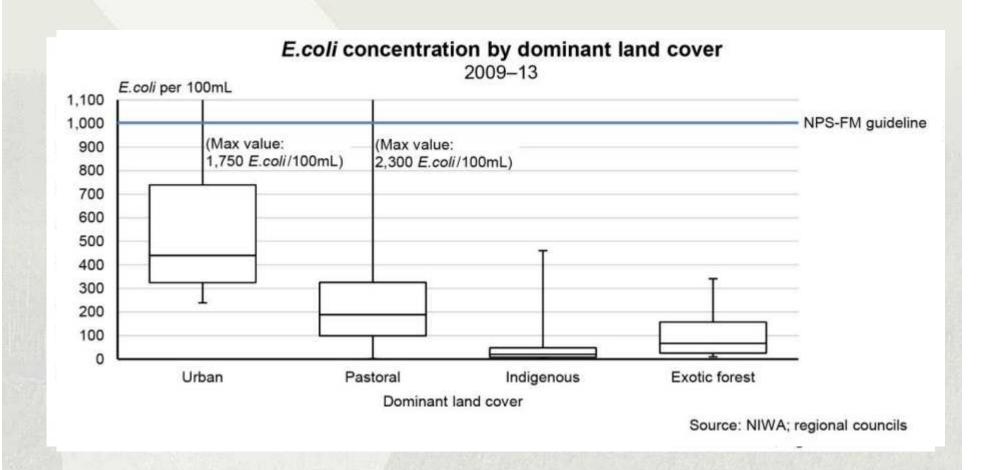
And the Share of Kindshadhan S

29/10/2015

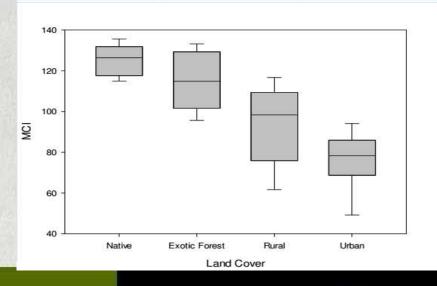



Plantations in the local mix

Landuse


- Plantations13%
- Indigenous14%
- Scrublands7%
- Grassland41%
- Urban15%

What does the data tell us


National Data = generally encouraging

Other regions

- National datasets
 generally indicates
 plantation forests
 maintain an average
 status a bit below
 undisturbed native forest
 but above pastoral
 farming and urban.
- Other regional data confirms....
 But pure forestry sites underrepresented.

Auckland 6% of sample

Land cover	Water Quality Index	Water Quality Class		
Native	91.7	Excellent		
Exotic Forest	81.9	Good		
Rural	66.7	Fair		
Urban	54.3	Fair		

 2001-02
 120

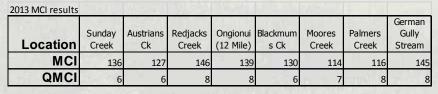
 2002-03
 131.1111

 2003-04
 100

 2004-05
 136.3636

 2005-06
 135.4545

 2007-08
 141.1111


 2008-09
 131.25

 2012-13
 123.8095

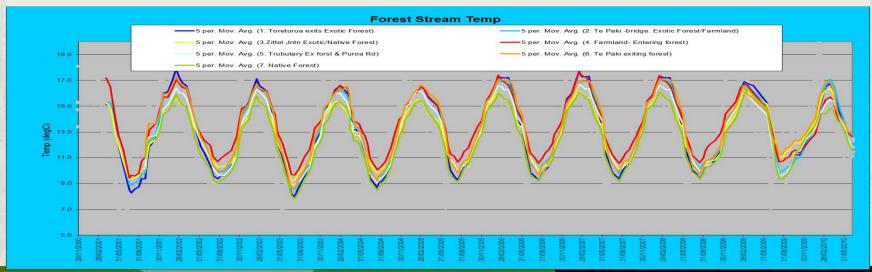
Other examples

Mangapapa Bay of Plenty

Plenty West Coast

160				MCI				
140								
120		_				137		•
100			\ /					
80 60 40								
40								
20								
0	2002	2003	2004	2005	2006	2008	2009	

Sunday Creek	Estimated fishing area = 220m2 Fish abundance (fish/m2)							
	2003	2006	2008	2010				
Longfin eel	0.073	0.095	0.005	0				
Shortfin eel	0	0.009	0.005	0				
Inanga	0	0	0	0				
Koaro	0.16	0.06	0.01	0				
Shortjaw kokopu	0	0	0	0				
Banded Kokopu	0.28	0.36	0.11	0.02				
Brown trout	0	0	0	0				
Bluegill bully	0	0	0	0				
Upland bully	0	0	0	0				
Redfin bully	0.04	0.03	0.05	0				
Dwarf galaxias	0	0	0	0				
Lamprey	0	0.015	0	0				

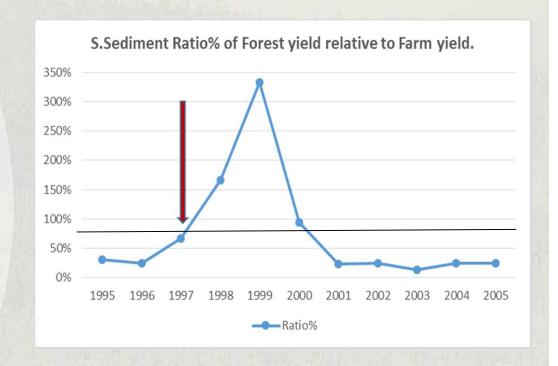


Water Temperature

Measured from a long term in-forest monitoring site during harvest.

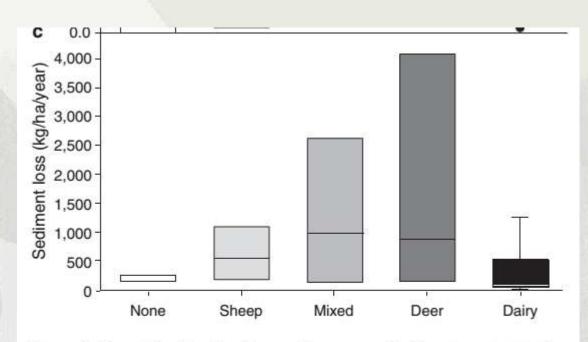
Native fish have maximum temperature acceptability of approximately 25°C (shortfin and longfin eels) and about 20°C for many bully species and below 20°C for trout and galaxid species. Introduced sport fish (salmon and trout) are stressed when temperatures exceed 20°C (Quinn, Hickey, 1990).

When considering macroinvertebrates water temperature is a key determinant of diversity. Stoneflies are largely confined to rivers between 13 and 19°C and mayflies are less common in rivers with maximum temperatures greater than 21.5°C (Quinn, Hickey, 1990).


- At time of harvest and particularly earthworks.
- Predominantly in small headwaters streams.
- Exacerbated by historic plantings right to stream edge and or poor establishment layout relative to harvesting needs.
- Second rotations should be better.

- Highly erodible sedimentary formations.
- Paired catchments pastoral grazing (sheep) and plantation.
- Standard practice at the time.
- Peak during harvesting more specifically roading earthworks.
- Declines quickly afterwards
- Overall sediment yield still well down on pastoral landuse.

Pakuratahi Study – Hawkes Bay



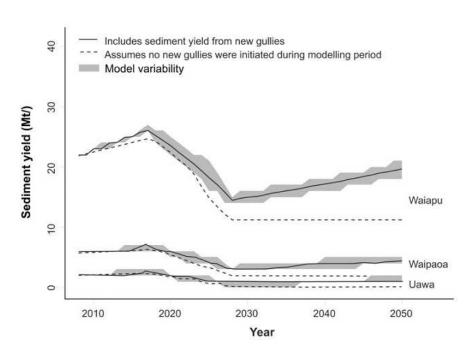

Figure 4. Box plots showing the median concentration, bounded by the 25th and 75th percentiles, the 10th and 90th percentiles as whiskers, and any outliers, for (a) N, (b) P, and (c) sediment annual loads for each stock class of land use. 'None' refers to non-agricultural rural land uses, such as exotic plantation and native forest, while 'mixed' refers to a catchment with more than one stock land-use class.

Table 1 Sediment generation data from different sources in Cpt 49 Whangapoua Forest following harvesting (Phillips et al. 2002; Marden et al. in press).

	Sediment generating	Area	Total	Sediment	Surface
Process	site	(ha)	sediment	generation	Lowering
			(t)	rate	(mm)
				(t/ha)	
	Undisturbed	14.5	Nil	Nil	Nil
	Roads & landings	2.0	n/a	n/a	n/a
Slopewash	Shallow disturbance	15.5	16	1	-0.07
	Deep disturbance	3.6	48	13	-1.1
Landsliding	Landslide source	0.12	600	1500	-125
	zone n=36				-
Soil	Deep disturbance	3.6	1200	333	-28
scraping					
Totals	All sources	36.0	1864	52	-4.3

Figure 5 Modelled reductions in gully-derived sediment yield (Mt/a) if all remaining gullies within the respective catchments were to be reforested by year 2020. Solid line includes sediment yield from new gullies initiated but not treated during the modelling period. Dashed line assumes no new gullies were initiated during the modelling period (from Marden *et al.* 2011).

© 2012 The Author New Zealand Geographer © 2012 New Zealand Geographical Society

So what does the industry do?

Responsible operators should.....

- Be working to Industry codes.
- Increasing focus on good planning and execution.
- Increasing focus on water
 Voluntary setbacks on all streams...
 - 5m streams up to 3.0 wide.
 - 10m all larger streams.
 - Sediment controls.

How the codes/rules start to play out....

Biggest risk – Debris flows

- Landslides deposit orders of magnitude more sediment.
- High intensity storm events more frequent...climate change?
- Much of NZ forestry on steeplands...failed under pasture but plantation system not bomb proof!

Big Storms Cause Landslides

Stream Recovery -Issue subject to some joint research between Industry and BoP RC

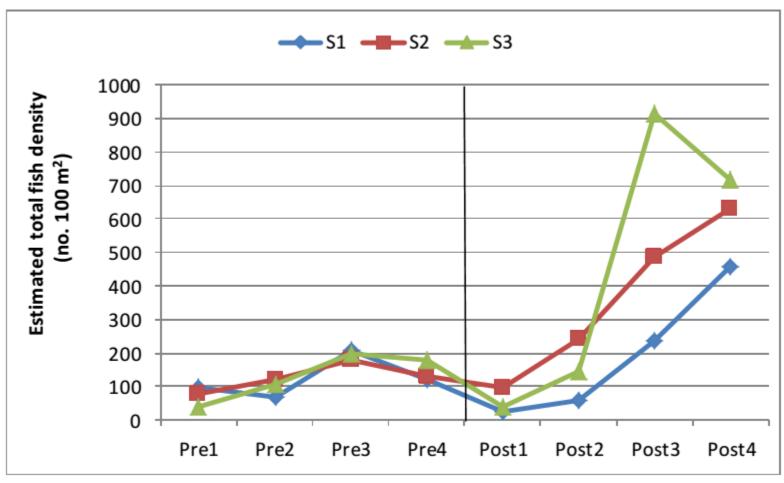


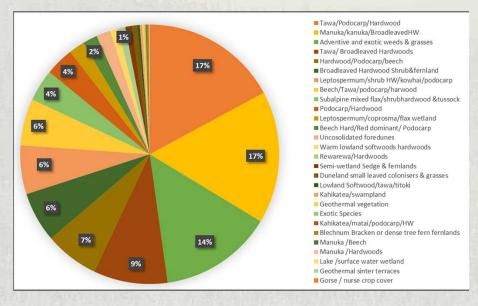
Figure 11: Estimated fish density at each site, before (Pre) and after (Post) the extreme weather event.

The vertical line separates pre and post event data points

Flood amelioration

Forests

- Canopies intercept about 20% of rainfall in low - moderate rainfall events.
- Root systems and low compaction allow rain infiltration.
- Below about 30% clearance in an individual catchment, hydrological effects unlikely.
- In very intense storms moderation effect reduced.
- Dryland environments or overallocated water demand, plantations may reduce peak yield.



Biodiversity

Fauna

Terrestrial/wetland reserves

10,600ha reserves = 19%

Ecosystem Services

Table 3. Indicative values (in \$ per ha per year) of key ecosystem services in the Ōhiwa catchment.

	Ecosystem service				Land use ¹				
Туре	Details	Productive			Natural				
		Dry stock	Exotic forestry	Dairy	Horticul- ture	Indigenous forest	Scrub	Wetlands and mangroves	Total
Provisioning	Food, wool, wood, pulp	158	483	1,686	8,810			-	11,137
Regulating	Carbon sequestration/ emission and GHG regulation	-16	48	-41					-9
	Avoided erosion and flood/disturbance regulation Regulating nutrient (nitrogen)		121			166	166	12,737	13,190
	supply (e.g. avoided leaching) Pollination	-3,200 69	2,800 206	-12,000 69	10,000 233	2,800 206	2,800 206		-16,800 989
	Water regulation ² Waste treatment	8	6 244	8		6 244	6 244	42 11,721	76 12,453
	Pest and disease regulation/ Biological control Water supply	164	11 8	105	65	11 8	11 8	10,664	367
Social	Recreation Species conservation		900 257			1,800 414		1,978 494	4,678 1,165
Supporting	Nutrient cycling		994			994	994	494	2,982
	Soil formation	3	14	3	6	28	28		82
Net ES Value Area (ha)	(\$/ha/yr) E (\$ per land use per year)	-2,814 4,914 -13,827,996	6,092 3,201 19,500,492	-10,170 2,854 -29,025,180	-885 51 -45,145	6,677 3,576 23,876,952	4,463 2,380 10,621,940	37,636 316 11,892,976	40,990 17,292 22,993,580

Blank cells indicate that there were no appropriate data found to represent those values. A blank space does not necessarily mean that the ecosystem service has no value. It is very likely the non-market of that particular ecosystem service can be estimated because that value had already been estimated for other land uses.

² Water regulation is defined in the MEA (2005) as "The timing and magnitude of runoff, flooding, and aquifer recharge can be strongly influenced by changes in land cover, including, in particular, alterations that change the water storage potential of the system, such as the conversion of wetlands or the replacement of forests with croplands or croplands with urban areas."